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The fluid-solid equilibrium of a system of hard spheres with embedded classical Heisenberg spins is studied
by means of computer simulation and various combinations of density functional theories with the spin-spin
contributions treated at the level of first-order perturbation theory. The phase boundaries are determined from
the simulation data using free energy calculations in the ferromagnetic and isotropic phases. Estimates of the
location of the Curie line in the solid are extracted from inspection of the evolution of magnetization with
temperature. The agreement between theory and simulation is relatively good for the ferromagnetic transition
and merely qualitative as far as the fluid-solid transition is concerned. The theoretical approach investigated
here tends to underestimate the stability of the liquid phg&#063-651X98)13609-1

PACS numbdrs): 61.20.Gy, 64.60.Cn, 71.18w

[. INTRODUCTION In this paper we focus primarily on the liquid-solid coex-
istence. Assuming a face-centered-culfic) structure of the

The classical Heisenberg model is among the simplessolid near melting we first determine the Curie line separat-
ones to study systems of particles with continuously varyingng the paramagnetic from the ferromagnetic solid. Below
internal degrees of freedom. The model has been extensivetyte Curie temperature, liquid-solid coexistence will occur be-
used in lattice simulations, especially to determine the crititween a ferromagnetic liquid and a ferromagnetic solid. The
cal exponents associated with the paramagneticcoexistence densities can be obtained from knowledge of the
ferromagnetic phase transitiofl,2. However, the con- apsolute free energies of the two phases. The liquid and solid
tinuum version of the model, in which the spins are notfree energies are determined in a Monte Carlo simulation by
confined to lattice positions and the interaction between pairfyeans of a reversible path linking a state of the system to
of spins is represented by a continuous function of their diSghat of a system in an infinitely strong external field that
tance, is of i_nt_erest too, presenting an even rich(_ar phase d_i@bmpletely aligns the spins. The free energy of the latter
gram comprising both magnetic and nonmagnetic gases, I'Os'tate, in turn, is evaluated by straightforward thermodynamic
uids, and solids. integration.

The topologically different diagrams of the continuum The knowledge of exact absolute free energies in the lig-
Heisenberg model, depending on the ratio of the integrated.d 4 solid hg furth bl tot t'g tit tq
strength of the exchange interaction to the spin-independerlﬁ.l and solid phases further enable us 1o test in a quantitative

interaction, have been established by Hemmer and Ifgjro W&y recent density functional theori¢d0-13. Some of
within mean fieldMF) theory and more recently by Tavares f[hese |r_1tended to establish the phase diagram of dipolar flu-
and co-workerg4,5] using both MF and a more refined ids, which be_ars a close resemblance to the present one. Al-
modified mean fieldMMF) density functional theoryDFT).  though the dipolar system may be a more realistic model for
More quantitative results have been obtained from Montderrofluids, its study, by theor10,14 or simulation[6], is
Carlo (MC) [6—9] simulations for the case where the spin- Vastly more complicated than the Heisenberg system, due to
independent interaction between pairs of particles is of théhe long range of the dipolar interaction and the concomitant
hard-sphere type. Thus the Curie line for the order-disordedependence of properties on sample shape and boundaries. In
transition has been located accurately by means of a finiteiew of these difficulties, not encountered in the present
size scaling analysi§8] and the liquid-vapor coexistence model where the interactions are strictly short ranged, no
curve determined from Gibbs ensemble NIGEMC) calcu-  “exact” free energies have been reported yet for the dipolar
lations[7,5]. Although the existing simulation results suggestferromagnetic phases allowing a test of the theories.

that the Curie line terminates at a critical end point on the In the following section we briefly summarize the model.
vapor side of the coexistence curve, implying the existenc&ection Ill is devoted to a brief presentation of the key ele-
of a magnetic critical point, precise locations of the param-ments of the various DFT perturbation approaches explored
eters of the critical end point and magnetic critical point arein this work. A detailed description of the simulation tech-
still lacking, mainly because of the absence of an estimate afiques used to attain a complete description of the fluid-solid
finite size effects on the coexistence curve. transition between ferromagnetic phases can be found in Sec.
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IV. Finally, the most significant results are presented and " s
commented upon in Sec. V. BFo[P]:f dr p(r){In[p(r)A°)—1]}
Il. MODEL +Nj do a(w)in[47ra(w)], (6)

In accordance with previous simulations of the gas-liquid .
coexistence curvgs,7] and the Curie ling8], the interaction With 8=1/kgT the inverse temperaturdy the number of
between two particles(r, »;,,) is taken to be the sum of particles, and\ the thermal de Broglie wavelength. In writ-

a hard core part ing Eq.(6) it has been assumed that the one-particle density
p(r,w) factorizes into translational and spin variables
+ oo <o _
_ ' p(rw)=p(r)a(w), (7)
Ug(r)= 0, >0 1)
with normalizations
and a spin part
f do a(w)=1 (8)
Uso(l, 01,02)=J(r)S; S, v
and
efz(r/afl)
Ir)=—d——— (o<r<rc=d0), () J dr p(r)=N. 9

While a variety of approximation schemes have been pro-
posed for the excess free eneldy] (see belowy, the per-
turbation term associated with the attractive part of the inter-
action(2) has so far mostly been evaluated in a MF13,17
or MMF [4,18,19 approximation. In the MF approximation,
the free energy is given by

wheres is a unit vector in the direction of the dipole mo-
ment, r=|r,—r,|, and o is the hard sphere diameter. In
order to be consistent with previous works8], the cutoff
distance of the Yukawa potential was setde2.5 andz
=1. A thermodynamic state of the system will be conve-
niently characterized by the reduced dengity= po® (or the
packing fractionn=mp*/6) and the reduced temperature

1
T*=1/J* =kgT/J. The coupling constanl is taken to be BF?_AF[p]:Ej dwlf dw,(s,-S)) a(wq) a(w,)
positive, thereby favoring parallel configuratiotisrromag-
netic).

xfdr p<r>fdr'p<r'>m<|r—r'|> (10

Ill. DENSITY FUNCTIONAL AND PERTURBATION . . .
THEORY and in the MMF approximation reads

The presence of a hard-core interaction suggests the con-_, . 1
struction of an approximate Helmholtz free energy of theSF1 [P]=§f d(‘)lf dwza(w;)a(ws)
Heisenberg modeF[p], the square brackets denoting a
functional dependence, by means of first-order perturbation ., —pI(r=r"])sy-
theory around a hard-sphere reference systeByl6. Ac- X | drp(r) | drip(r)[1-e ).
cordingly, we write (1)

Flpl=Folp]+Filpl, (4) The basic simplification in MMF theory is to approximate
the two-particle correlation function by its low-density limit
whereF[ p] is the free energy of the hard-sphere referenc hnd In '\f\'/: the?]rynl\J/yr:?sr:;srl‘rg?-dlslttanﬁle :Irrlntlrt1 '\]{o:f ::at rl:/”t:|
system andF4[p] the first-order perturbation term. The pheaosrg gln ?rS]eafolcl)ow?ngSsubgseizznsow)é wil Spscif?/ tﬁg Oﬁf_c
right-hand side of E¢(4) is known to be an upper bound of ferent free energy contributions for the fluid and solid

F[ p] irrespective of the choice of the reference system. This hases. Once an aporoximate free enerav functional is cho-
exact result will be used to estima# p] by minimizing the b : pp 9y

: sen, the equilibrium density distribution is obtained by mini-
upper bound with respect to a free parameter of the rEHcerencr‘ﬁization of the free energy functional and the coexistence
system. " - ; )

The reference system Helmholtz free enefgp] can be densities by requiring that the pressures and chemical poten

split as a sum of the ideal and excess contributions, i.e., tials of the liquid and solid phases be equal

A. Ferromagnetic liquid

Folp]=F&p]+F&p], 5
olp1=Folp]+Fole] ® For the fluid phase the one-particle density is

where p(r,w)=pa(w), (12
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wherep is the (uniform) density of the fluid. In this case the ordering in the medium. With this single order-parameter

ideal free energy per particle yields approximation, the normalization ef(w) yields
B9 p]=In( A3)—1+f do a(w)inN[47a(w)] A:ii (20)
o g ’ 47 sinhB’

(13
leading to a spin contribution of the ideal free energy given
while the excess free energy per particle will be determinegpy

from the Carnahan-Starlin@0] equation of state to give
sinh B

n(4—37) f do a(w)in[47a(w)]=B COthB—l—In( B

ﬁfgﬁp]zw- (14 21)

The perturbation free energy can also be integrated explicitly

;he perturbation term per particle in the MF apprOX|mat|onin the MF approximation leading to
1 VE 249\ 172
BTo1=50 [ doy [ dos(s s)ateyales) piflpl=-—joothB-5| . @2
where
xf dr BJ(r). (15
_1 1 1 —2(5-1) 5 1
One can note that if the system is magnetized in the di- A=ollz T2 e Z2T 2] (23

rectionn (n being the unit vector along the preferred direc-
tion of alignment of the spinshen the integral over orien- i.e., A=0.6095 for the cutoff distance considered in the
tations in Eq.(15) is simulations.
For the MMF approximation, if one uses Neumann's ex-
1 2 pansion of the exponential in Eq4.7) and(18), the orthogo-
277f_1du Uar(u) | (16) nality properties of the Legendre polynomials tell us that the
free energy can be expressed as

whereu=s-n=cos 6. In the MMF approximation

MMF 1< o[ 1(B) ; *
a1 B p)= =5 2 21+ 1% g | wn.T*),
B (1= [ dos [ dosatopator) ; ° o
i.e., a series expansion that depends on a single paraBieter
XJ dr[l—e‘[”(”sl'%]. (17) :Nhere ! Xp I p ingle p By
To proceed further a parametrization @fw) is needed. . B /ll 5
One possibility is to expand(w) in terms of Legendre h(x)= 2% 1+ 172%), (25
polynomials
with 1, 15(X) the modified spherical Bessel functions of the
1 2 first kind [23], and
a(w)==— >, a/P/(cos ) (19
2 =0 s i[BJ
. W[BI(X)]
u(n,T*)=247n | dx 3 137 %o, (29
as was done by Tavarest al. in Ref. [4]. Once the free 1 2l+1

energy is constructed using Eq4.3), (14), and (17), one ,

simply proceeds as usual in DFT, searching for the minimun)(‘”th

of the functional, in this case sampling the parameter space 1

defined by the orientational order coefficients. This pro- BI(x)= —e 2x"1), (27)
cedure, though perfectly feasible in the present instance, XT*

might be a somewhat delicate numerical task in certain cases

[11]. This expression is identical to EQL6) in Ref. [5] with the
An alternative parametrization is to adopt a simple func-Orientational order parameters defined in terms of a single
tional form for «(w), e.g., effective fieldB,
_ A aBP;(cos6) 21+1i(B
a(w)=Ae""1 , (19 o= 'I( ) . 29)
2 io(B)

which is well known in the study of orientational transitions

in liquid crystals[21,22 and is a straightforward result in It turns out that for the ferromagnetic systems we are here
simple mean field approachgk3]. HereB plays the role of dealing with, the multiple-parameter minimization implicit in
aneffective fieldacting on each spin induced by the magneticEq. (18) when all «; are considered free and the single-
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parameter minimization lead to identical results. Conse- TABLE I. Inverse width of the Gaussiap =ymo? and effec-
guently, we will here retain the simpler one-parameter formtive liquid densityz,, of the hard-sphere fcc solid as obtained from

in our calculations. the GELA.
Note that the minimization with respect to the order pa
rameterB can be explicitly done in the MF approximation, Ui v T
leading to
0.50 56.4 0.331
Bzm 487\ 0.51 68.0 0.323
B OB 1~ <= (29 0.52 80.9 0.317
mCOt By T 0.53 95.6 0.313
h B is th d h . Wh 0.54 112.7 0.309
where m, is the order parameter at the minimum. en 055 132.8 0.305
maﬁo'lderll(Bm coth B,,—1)— 3, yielding the Curie line of 0.56 156.6 0.302
the fluid phase 0.57 185.1 0.300
0.58 219.9 0.297
Ti=1 .
c =167 30 0.59 262.4 0.295
Using similar arguments, the Curie line of the fluid phase in 0.60 315.3 0.293
the MMF approximation can be shown to be given by 0.61 381.8 0.291
0.62 467.3 0.290
1 0.63 578.6 0.288
uy(7,TS)=73, (3D 0.64 727.8 0.286

a result also arrived at in Refl0] and[4]. Bogoliubov variational principle. We will first focus on the

GELA since our treatment leads in this case to much simpler

B. Ferromagnetic solid quasianalytical results.
In the solid phase the local density is given by In the GELA the excess free energy per particle of the
solid Bf§{p] is mapped onto that of an effective uniform
p(r,w)=p(rae(w), (32 fluid [26,27, i.e.,
where p(r) describes the periodic distribution of particles 7(4—37)
centered around the lattice sites of the Bravais crystal. In the ﬁfgx[p]z(l—A)z, (35
-n

hard-sphere soligp(r) can be accurately parametrized as a

sum of identical normalized Gaussigzt,25, i.e., . a ) ) )
wheren= 5(7,y) denotes the effective packing fraction that

v\ 32 N , is used to represent the solidy (being the average packing
p(r)=(—) 2 e Yr-R)7 (33 fraction of the soligl and we have assumed that the hard-
LR sphere fluid can be described by the Carnahan-Starling equa-
. . . tion of state(see[26,27] for details. _
wherey measures the inverse width of the Gaussians and the By minimizing the variational free energ;ﬁf'g’[p]

sum runs over the Bravais lattice vectdiR;}. Since in a + BfS{p] with respect toy, for a given average solid den-
solid the Gaussians are very narrow, the translational contri-.” "0 p P o7, 9 9

bution to Eq.(6) can be approximated by its asymptotic sity and a crystal structur@here the fcc hard-sphere sglid
large-y form leading to the ideal free energy per particle the free energy of the reference solid reads

pistp1-an 2]+ [ 2] S Bolp)=fusm)+ | do a(wama(@)], (@9
o 2 2
where
+f do a(w)in[47a(w)]. (39 R R
A 3 ')’mo'2 5 7m(4—37m)
) fus(7)=3In| — +§In St 2

The excess free energy of the hard-sphere solid has been o ™ (1—nm)

considered in two slightly different approaches, the general- (37)

ized effective liquid approximatiofGELA) [26,27] and the _

modified weighted density approximatiogiMWDA) [28— wherey,,= ym(f’) |sAthe value of the order parameter at the
30], which has recently been applied by Groh and Dietrichminimum and»n,,= n(7, ym(7)). Note that since the hard-
[11] to describe the fluid-solid transition in dipolar fluids. In core part(1) has no spin-spin interaction, the angular depen-
the first instance, we have adopted a perturbative approacHencea(w) does not contribute to the excess part of the free
i.e., the hard-sphere solid, approximated in the GELA, isenergy, the resulting free energy of the reference solid being
considered to be a pure reference system, with a lattice pshe same as that of the hard-sphere s@hithout spin plus
rameter known in advance, and then the perturbation term tan ideal contribution coming from the angular distribution of
the free energy is minimized following the Gibbs- the spin variables. Since this contribution is the same for the
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fluid and solid phases, the change of stability between the These perturbative contributions remain identical in the
fluid and solid reference systems is foundrat 0.517[27]. MWDA treatment, in which again the solid is mapped onto a
In Table | we have gathered the valuesydf= y,o? andz,,  uniform system at a weighted densigee[28] and[11] for

of the fcc hard-sphere solid for different average solid denmore details In contrast to our treatment in the GELA,
sities. when using the MWDA, we have followed Groh and
ing the angular integrations in the translational part of Eqfree energy functional built from the ideal, reference, and
(10), the perturbation term per particle in the MF approachperturbanon contributions. This implies that the lattice pa-

reads rameter and the effective fieB are variables that enter the
minimization process. Again, one could also use as minimi-
1 172 zation parameters all the, from Eq. (28), but at least in our
B pl=— FR( )| cothB— 5} : (38  case this leads to identical results, as it happens with the

ferromagnetic liquid. It can be noted that the MF theory de-

scribed above is similar to the van der Waals—type theory

proposed by Oukouiss and B4us3], except for the fact that
7+ y* (56— Xi)) in the latter theory the hard-sphere free energy is treated in

where

* z . . .
R( 77)2922/27 > X—eZ“‘i*l){erf the (numerically pooy free volume approximation.
=~ X;

i V2y*
IV. SIMULATIONS

Lo ZEATX) _e?22r S L) _ - .

W T X The free energies of the liquid and_sol_ld phas_es were c_al-
culated by means of thermodynamic integration. In this

z+ y* (8+X;) z+ y* (1+x)) method the absolute free energy of a state is related to the
xX|erfl ————| - — || (known) free energy of a reference state via a reversible path
2y 2y linking both states. For the ferromagnetic phases under in-

(39 vestigation the reference state that asserts itself is a state
where the spins are perfectly aligned. The actual state is
wherex;(7) =|R;|/o and erf) is the error function. For the transformed to the perfectly aligned one by coupling the
MMF approximation we use again Neumann’s expansion ofpins to an external aligning field. Such a procedure was
the exponential in Eqg17) and (18), together with the or-  applied previously by Veerman and Frenk8ll] to deter-
thogonality properties of the Legendre polynomials, to get mine the free energy of the smectic phase of spherocylinders.
The Hamiltonian of the spin system in a constant field of

MME 1o i(B))? magnitude\ is
B Ipl==5 2 (21+ 1) == | vi(n,T*),
2 =0 io(B)
(40 Hy=Ho—\> cos, (45)
with '
«\12_ 1 s i (83 whereH, is the Hamiltonian of the system in the absence of
o1 TH)= 7_) 1 f dx XZ(M_ 5|0) the field andé; is the angle of spiri with the field. The
2m T XjJa 2l+1 change in free energy entailed by the field is given by

X[ e~ N (x=x)%2_ o= v* (x+x))%12). 41 !
[ ] (41) FAZFo—j d)\'<2 0059i> , (46)
0 i
)\/

Again, the minimization with respect to the order param-
eter can be exactly computed in the MF approximation to

find where ( ), denotes averaging over the system with the
HamiltonianH,, .
Bﬁ] 1 Let us further consider an ide@oninteracting system of
= spins in an external field. A relation similar to E¢6) holds,
_ _ N id
yielding for the Curie line of the solid phase Fl=F§- fo d)\’<2 cos 9i> : (47)
I NG
Te=gR0m, (43 where (), denotes averaging over the system with the
Hamiltonian
which reduces to the evaluation of a lattice sum for each
average solid density. Using similar arguments, the Curie Hi)(\:i,:_)\z cos 6. (49)
I

line of the solid phase in the MMF approximation can be

shown to be given by

If one now remarkg31] that in the limit of an infinitely
strong field f—o°,) Fx—Ff—>Fp, the free energy of the

1
*\—
v1(7,Tc)= 3’ (44 parallel (perfectly aligned system, then
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TABLE II. Contributions to the free energy of the spin system in fluid and solid reference states as obtained from the MC siulation.
denotes the last term on the right-hand side of &4).

p* ™ BFus/N BF,/N BFYIN BINS AN (= icos 8, BAIN BFIN
0.92 1 3.498 ~5.162 —94.702 98.033 0.156 -1.675
0.92 3 3.498 +0.613 —94.702 97.010 0.057 +2.978
1.10 1 5.653 ~5.025 —94.702 98.220 0.187 -1.324
1.10 3 5.653 +2.097 —94.702 97.203 0.067 +4.665

3 rom the Carnahan-Starling equation of s{&x@.
bFrom the Hall equation of staf@5).

pa__ N sinh B\ g
Yo B\o

B (52

Fo=Fp+ F{§’+f d\’
0

<Z C056i>w_<§i: cosai>

W N

)\!

(49
is defined so that it vanishes in the zero field limit. This is
o [, consistent with the definition of the ideal free energy in Eq.

sz+Fo+fo dn’ (6), where the contribution from the rotational degrees of
freedom vanishes in the uniform system linfik(w)
=1/47].

(50 For A<\, the contribution from the ideal term has been

evaluated analytically. Fot>\, it is preferable not to sepa-

rate the two terms; as remarked in Ref1], if both terms in

the integrand were calculated separately, the difference be-

tween the two terms would become smaller than the statisti-

cal error on either term.

Following the strategy suggested by Veerman and Frenkel
[31], each trialg; is then sampled from the probability dis-

(3 o), (3 e

id
A

)\! ’
The last relation follows from the fact that for sufficiently
large N\, the contribution of the neglected tergmtegral
from A, to ) will be vanishingly small.

Finally, from a numerical point of view, it will be conve-
nient to split the integral in Eq49) into two parts

N tribution
) 0
F0=Fp+F'g+f d)\’<2 0036i>
0 ' N P(8)xexp( B\ cosf). (53
Am id
+f d\’ <E cos 0i> - < > cos 9i> , If no overlap occurs, the trial move is accepted and
\o i N i N
(51) cos 6;],—cos ;| 4=0. (59
where If no overlap occurs the trial move is rejected and

TABLE lll. Thermodynamic properties of the Heisenberg system at the dengitie€.92 (liquid) and
p* =1.1(solid). m is the magnetization of the system.

p*=0.92 p*=1.10
Theory BF/N m Theory BFIN m
T*=1
RZH —-1.672 0.933
MWDA —4.066 0.970
MMF —1.530 0.946
GELA —3.450 0.968
MF —0.248 0.923 GELA —0.780 0.948
MC —1.692) 0.9351) —1.323) 0.949
T*=3
RzH 2.960 0.759
MWDA 4.345 0.838
MMF 3.177 0.714
GELA 4.629 0.836
MF 3.246 0.698 GELA 4.79 0.821

MC 2.992) 0.7642) 4.673) 0.82
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cos 6;|, — cos 6] ig=cos 67, —cos 6", iq. (55

At this point we are still left with the calculation of the T=10
free energy of the parallel system. This is simply the system L5
where particles interact by a Yukawa potentialaddition to
the hard-sphere interactipand the free energy is easily ob- Ferromagnetic fluid
tained by perturbation around the hard-sphere value, i.e.,

Ferromagnetic solid N

1 1
Fp:FHS+J d)\<§2 J(rlj)> , (56) N \‘\,\
0 1#] N

where the average is taken over a system with an interpar-
ticle potential

Ux(r)=uo(r)+AJ(r). (57
V. RESULTS
A. Simulations

[e]
%00000
The first goal of our investigation was to locate the para- \—/

magnetic solid—ferromagnetic solid transition. This was done
by recording, at a fixed density, the magnetization of a 512-
particle fcc crystal as a function of temperature and estimat- 08 09 10 11 12

ing the critical temperature from the inflection point of the K

curve. Such an estimate, ignoring finite size effects, can be g5 1 Free energy aF* = 1. Simulation data are represented
expected to be only qualitative. However, a comparison, iryy circles. A dash-dotted line denotes MF results, which include the
Ref. [8], with the more precise value of the transition tem-Gg| A in the solid, and a dotted line stands for the GELA plus the

perature obtained from the intersection point of the fourthumF data. A solid line represents MMF data in the liquid phase
order Binder cumular{32] for the magnetization plotted as a and the MWDA plus the MMF data in the solid.

function of temperature for different system sizes showed

that this estimate is in fact quite accurate. Therefore, we did In Eq. (59) J'(r) is the derivative ofl(r) andh,(r) the

not apply this more time consuming procedure here. Theyrojection of the pair distribution function @-s,. We note

critical temperatures are approximately* =6.7 and T*  that, owing to the discontinuity of the potential m&r., a

=7.3 for the densitiep™ =1.1 and 1.2, respectively. s-function contribution arises that is quite significant in the
The free energy8F/N was calculated along the lines de- ferromagnetic phase. It is given by

tailed in Sec. IV, using the canonical MC method, at the

densitiesp* =0.92 (liquid) andp* = 1.10(solid) and the two

temperature§* =1 and 3. The number of spins was 512.

The different contributions tg8F/N are summarized in

Table II. The free energy of the parallel systggh,/N [cf.  Along the isothernT* =1, the pressure was calculated in the

Eq. (56)] was evaluated using a five point Gauss-Legendrejensity intervals p* =0.85-1.00 (liquid) and p*=1.06

(GL) quadrature. In fact, the integrand varies very little with —1.16 (solid) and along the isotherf* =3 in the intervals

\ (the difference of the averages appearing in the integrang* =0.90-1.00 (liquid) and p* = 1.02— 1.14 (solid); the re-

for A=0 and 1 being only 0.02so that a first-order pertur- sults were fitted to simple polynomial expressions.

bation would be a good approximatigd3]. The integrals in For comparison we include the free energy values ob-

Eq. (51) were evaluated using a six-point GL quadrature andained in the ferromagnetic liquid phase using an integral

the valuesB\ o=100 andB\,,=50 000. For each value af  equation technique recently devised to deal with inhomoge-

averages were taken over runs involving between 30 000 angeous systemi4]. The reference Zerah-Hans@RZH) clo-

40 000 trial moves per partici@fter equilibration. The free  sure relation used is especially designed to reproduce the

energy along an isotherm was obtained by integration of theero field singularities of the magnetic susceptibility and al-

p) 4mp® ,
—| =— red’(ro)ha(re). (60)
kT c 18KT °© € €

pressure though free energies are only accessible through thermody-
namic integration, the results obtained are in absolute accor-

P_ P ﬂ) (58  dance with the simulation data, as can be appreciated in

kT P kT He kT Spin’ Table Il. Coexistence densities, summarized in Table IlI,

were obtained from the equality of the pressures and chemi-
which is the sum of the hard-core pap/kT)c and the spin  cal potentialsBu=BF/N+ Bp in the two phases.
part (p/KT)gpin given by
B. Density functional theory
p A7p? o . . .
| == _f dr r33'(r)hy(r). (59 The key quantity in a thermodynamic description is
kT spin 18T doubtless the free energy. It is then worthwhile assessing the
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T T peratures. This approach, however, is so far unsuitable for
phase equilibrium calculations since the optimization proce-
dure and the thermodynamic integration are exceedingly
T =30 time consuming.

In Figs. 1 and 2 we have plotted the free energy along the
two isotherms for which the simulation was performed.
Again in the liquid we observe that the MMF theory per-
forms slightly better than the MF approximation. As to the
solid, at the higher temperature the combination of the
GELA plus the MMF theory reproduces almost exactly the
simulation data. When the temperature is lowered, the ap-
. proximation is not as good, and the results are actually rather
poor. Both the GELA with the MMF theory and the MWDA
results lie consistently below the simulation data, a situation
that is reversed in the liquid phase, and as a consequence the
double tangent construction is impossibleTat=1. At this
temperature none of the theories predicts an equilibrium be-
tween the ferromagnetic liquid and solid phases, but between
the paramagnetic gas and the ferromagnetic solid. This is in
contrast to the simulation, which clearly indicates that the
triple point must lie somewhere below* =1. The solid-
fluid coexistence properties are determined by means of a

25 . double tangent construction and for the two isotheffis
038 0.9 10 L1 12 =1 andT* =3 are summarized in Table IV. Now the com-
e parison between the various theoretical approaches is more
FIG. 2. Free energy a* = 3. The curves are labeled as in Fig. inconclusive. In Fig. 3 we show the complete phase diagram
1. as obtained from the simulatiqgas-liquid equilibrium data
and the location of the liquid Curie line are taken from Ref.
ability of our theoretical approaches to provide a sensibldé>) and in the MMF approactboth using the MWDA and
description of this quantity. However, it must be borne in GELA descriptions for the solid The simulation estimates
mind that solid and fluid phases have not been treated on & Curie line in the solid phase are also shown in the figure.
equal footing. The reference system for the latter, namelyNow the MMF plus GELA seems to be in better agreement
the hard-sphere fluid, is known to be accurately described byith the simulation. Moreover, the combination of the
the Carnahan-Starling equation of state. In contrast, for th#/WDA with the MMF perturbation term with the double
hard-sphere fcc solid phase we have to resort to DFT apllinimization strategy proposed by Groh and Dietr[d!]
proaches such as the GELA and MWDA, which will them- Yields in our case a Curie line that considerably deviates
selves introduce certain inaccuracies. The behavior of METOM the simulation estimates and departs somewhat from
and MMF approaches will consequently differ in both the typical linear behavior. Although the scarcity and uncer-
phases. From the results collected in Table IIl, one can ap@inties of the simulation data do not allow for a definite
preciate that as far as the liquid is concerned, the MMF an@SSessment, it seems that the simultaneous optimization of
MF treatments are comparable, though the MMF seems sdbe lattice parameter and the effective field affects the results
perior at low temperatures. Nonetheless, these approxim&uite unpredictably. On the other hand, the fact that the
tions cannot match the RZH results, in particular at low tem-GELA predictions for the solid-liquid equilibrium are
slightly better is not at all surprising since it simply reflects

TABLE IV. Coexistence properties of the Heisenberg spin sys-that this approximation is already somewhat more accurate

Ferromagnetic fluid

BEN

35

Ferromagnetic solid

tem and the fully aligned system. for the reference system. We note in passing that the MMF
Curie line is identical to the MF line in the solid phase,
Theory pr ¥ B8p Bu provided the reference system is kept constant for all tem-
peratures, since the temperature at which the transition oc-
=1 curs is so high that the linearization of the exponential in Eq.
MC 0892 1112 201 -203 (17) does not introduce appreciable changes in the results.
MF Finally, in Fig. 4 we present the complete phase diagram
MMF (GELA) in the mean field approximation, including the Curie lines
MMF (MWDA) both in the liquid and in the solid phases. The gas-liquid
MC (fully aligned 0.873 1.113 071 —4.38 critical point is clearly underestimated by the MF approach,
T*=3 but aside from this the overall aspect of the phase diagram is
MC 0.932) 1.052) 9.20 10.45 quite similar to that obtained using MMF perturbation terms.
MF 0.892 1.023 8.4 8.84  In both cases the triple point is overestimated by far, i.e., the
MMF (GELA) 0.883 1.019 8.0 10.8 simulation indicates that the Heisenberg interactions can sta-
MMF (MWDA) 0.850 1.039 6.85 954 bilize the liquid phase to a larger extent than predicted by the

theory.
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FIG. 3. MMF phase diagram of the Heisenberg spin system. FIG. 4. Mean field phase diagram of the Heisenberg spin sys-
tem. Simulation data are denoted by symbols as in Fig. 3. The

Simulation data are represented by symb@slid circles are
GEMC gas-liquid equilibrium data, squares denote the fluid-soliddash-dotted line represents the MF predictions, with the solid de-

equilibrium estimates, and diamonds mark the paramagneticscribed in the GELA.
ferromagnetic transition Solid lines denote MMF results and the
MMF plus the MWDA, and the GELA MMF equilibrium is repre- recently developed integral equation techniques and reason-
sented by a dotted line. Fluid-solid data Et=7 correspond to ably well using the DFT approaches just mentioned; how-
plain hard spheres. ever, this will not suffice to attain an accurate mapping of the
phase diagram until a better theory for the solid phases be-
VI. CONCLUSION comes available.
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