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Liquid-solid transition of the ferromagnetic Heisenberg fluid:
Simulation, density functional, and perturbation theories
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The fluid-solid equilibrium of a system of hard spheres with embedded classical Heisenberg spins is studied
by means of computer simulation and various combinations of density functional theories with the spin-spin
contributions treated at the level of first-order perturbation theory. The phase boundaries are determined from
the simulation data using free energy calculations in the ferromagnetic and isotropic phases. Estimates of the
location of the Curie line in the solid are extracted from inspection of the evolution of magnetization with
temperature. The agreement between theory and simulation is relatively good for the ferromagnetic transition
and merely qualitative as far as the fluid-solid transition is concerned. The theoretical approach investigated
here tends to underestimate the stability of the liquid phase.@S1063-651X~98!13609-7#

PACS number~s!: 61.20.Gy, 64.60.Cn, 71.10.2w
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I. INTRODUCTION

The classical Heisenberg model is among the simp
ones to study systems of particles with continuously vary
internal degrees of freedom. The model has been extens
used in lattice simulations, especially to determine the c
cal exponents associated with the paramagne
ferromagnetic phase transition@1,2#. However, the con-
tinuum version of the model, in which the spins are n
confined to lattice positions and the interaction between p
of spins is represented by a continuous function of their d
tance, is of interest too, presenting an even richer phase
gram comprising both magnetic and nonmagnetic gases,
uids, and solids.

The topologically different diagrams of the continuu
Heisenberg model, depending on the ratio of the integra
strength of the exchange interaction to the spin-indepen
interaction, have been established by Hemmer and Imbro@3#
within mean field~MF! theory and more recently by Tavare
and co-workers@4,5# using both MF and a more refine
modified mean field~MMF! density functional theory~DFT!.
More quantitative results have been obtained from Mo
Carlo ~MC! @6–9# simulations for the case where the spi
independent interaction between pairs of particles is of
hard-sphere type. Thus the Curie line for the order-disor
transition has been located accurately by means of a fi
size scaling analysis@8# and the liquid-vapor coexistenc
curve determined from Gibbs ensemble MC~GEMC! calcu-
lations@7,5#. Although the existing simulation results sugge
that the Curie line terminates at a critical end point on
vapor side of the coexistence curve, implying the existe
of a magnetic critical point, precise locations of the para
eters of the critical end point and magnetic critical point a
still lacking, mainly because of the absence of an estimat
finite size effects on the coexistence curve.
PRE 581063-651X/98/58~3!/3426~10!/$15.00
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In this paper we focus primarily on the liquid-solid coe
istence. Assuming a face-centered-cubic~fcc! structure of the
solid near melting we first determine the Curie line sepa
ing the paramagnetic from the ferromagnetic solid. Bel
the Curie temperature, liquid-solid coexistence will occur b
tween a ferromagnetic liquid and a ferromagnetic solid. T
coexistence densities can be obtained from knowledge of
absolute free energies of the two phases. The liquid and s
free energies are determined in a Monte Carlo simulation
means of a reversible path linking a state of the system
that of a system in an infinitely strong external field th
completely aligns the spins. The free energy of the la
state, in turn, is evaluated by straightforward thermodyna
integration.

The knowledge of exact absolute free energies in the
uid and solid phases further enable us to test in a quantita
way recent density functional theories@10–13#. Some of
these intended to establish the phase diagram of dipolar
ids, which bears a close resemblance to the present one
though the dipolar system may be a more realistic model
ferrofluids, its study, by theory@10,14# or simulation@6#, is
vastly more complicated than the Heisenberg system, du
the long range of the dipolar interaction and the concomit
dependence of properties on sample shape and boundari
view of these difficulties, not encountered in the pres
model where the interactions are strictly short ranged,
‘‘exact’’ free energies have been reported yet for the dipo
ferromagnetic phases allowing a test of the theories.

In the following section we briefly summarize the mode
Section III is devoted to a brief presentation of the key e
ments of the various DFT perturbation approaches explo
in this work. A detailed description of the simulation tec
niques used to attain a complete description of the fluid-s
transition between ferromagnetic phases can be found in
3426 © 1998 The American Physical Society
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IV. Finally, the most significant results are presented a
commented upon in Sec. V.

II. MODEL

In accordance with previous simulations of the gas-liq
coexistence curve@5,7# and the Curie line@8#, the interaction
between two particlesu(r ,v1 ,v2) is taken to be the sum o
a hard core part

u0~r !5H 1`, r<s

0, r .s
~1!

and a spin part

uss~r ,v1 ,v2!5J~r !s1•s2 . ~2!

J~r !52J
e2z~r /s21!

r /s
~s,r ,r c5ds!, ~3!

wheresi is a unit vector in the direction of the dipole mo
ment, r 5ur12r2u, and s is the hard sphere diameter. I
order to be consistent with previous works@5,8#, the cutoff
distance of the Yukawa potential was set tod52.5 andz
51. A thermodynamic state of the system will be conv
niently characterized by the reduced densityr* 5rs3 ~or the
packing fractionh5pr* /6) and the reduced temperatu
T* 51/J* 5kBT/J. The coupling constantJ is taken to be
positive, thereby favoring parallel configurations~ferromag-
netic!.

III. DENSITY FUNCTIONAL AND PERTURBATION
THEORY

The presence of a hard-core interaction suggests the
struction of an approximate Helmholtz free energy of t
Heisenberg modelF@r#, the square brackets denoting
functional dependence, by means of first-order perturba
theory around a hard-sphere reference system@15,16#. Ac-
cordingly, we write

F@r#.F0@r#1F1@r#, ~4!

whereF0@r# is the free energy of the hard-sphere referen
system andF1@r# the first-order perturbation term. Th
right-hand side of Eq.~4! is known to be an upper bound o
F@r# irrespective of the choice of the reference system. T
exact result will be used to estimateF@r# by minimizing the
upper bound with respect to a free parameter of the refere
system.

The reference system Helmholtz free energyF0@r# can be
split as a sum of the ideal and excess contributions, i.e.,

F0@r#5F0
id@r#1F0

ex@r#, ~5!

where
d

-

n-

n

e

is

ce

bF0
id@r#5E dr r~r !$ ln@r~r !L3!21#%

1NE dv a~v!ln@4pa~v!#, ~6!

with b51/kBT the inverse temperature,N the number of
particles, andL the thermal de Broglie wavelength. In writ
ing Eq. ~6! it has been assumed that the one-particle den
r(r ,v) factorizes into translational and spin variables

r~r ,v!5r~r !a~v!, ~7!

with normalizations

E dv a~v!51 ~8!

and

E dr r~r !5N. ~9!

While a variety of approximation schemes have been p
posed for the excess free energy@16# ~see below!, the per-
turbation term associated with the attractive part of the in
action~2! has so far mostly been evaluated in a MF@4,13,17#
or MMF @4,18,19# approximation. In the MF approximation
the free energy is given by

bF1
MF@r#5

1

2E dv1E dv2~s1•s2!a~v1!a~v2!

3E dr r~r !E dr 8r~r 8!bJ~ ur2r 8u! ~10!

and in the MMF approximation reads

bF1
MMF@r#5

1

2E dv1E dv2a~v1!a~v2!

3E dr r~r !E dr 8r~r 8!@12e2bJ~ ur2r8u!s1•s2#.

~11!

The basic simplification in MMF theory is to approxima
the two-particle correlation function by its low-density lim
and in MF theory by its large-distance limit. Note that M
theory gives a nonvanishing result only in the ferromagne
phase. In the following subsections we will specify the d
ferent free energy contributions for the fluid and so
phases. Once an approximate free energy functional is c
sen, the equilibrium density distribution is obtained by min
mization of the free energy functional and the coexisten
densities by requiring that the pressures and chemical po
tials of the liquid and solid phases be equal.

A. Ferromagnetic liquid

For the fluid phase the one-particle density is

r~r ,v!5ra~v!, ~12!
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wherer is the~uniform! density of the fluid. In this case th
ideal free energy per particle yields

b f 0
id@r#5 ln~rL3!211E dv a~v!ln@4pa~v!#,

~13!

while the excess free energy per particle will be determin
from the Carnahan-Starling@20# equation of state to give

b f 0
ex@r#5

h~423h!

~12h!2
. ~14!

The perturbation term per particle in the MF approximati
is

b f 1
MF@r#5

1

2
rE dv1E dv2~s1•s2!a~v1!a~v2!

3E dr bJ~r !. ~15!

One can note that if the system is magnetized in the
rectionn (n being the unit vector along the preferred dire
tion of alignment of the spins! then the integral over orien
tations in Eq.~15! is

S 2pE
21

1

du ua~u! D 2

, ~16!

whereu5s•n5cosu. In the MMF approximation

b f 1
MMF@r#5

1

2
rE dv1E dv2a~v1!a~v2!

3E dr @12e2bJ~r !s1•s2#. ~17!

To proceed further a parametrization ofa(v) is needed.
One possibility is to expanda(v) in terms of Legendre
polynomials

a~v!5
1

2p (
l 50

`

a l Pl~cosu! ~18!

as was done by Tavareset al. in Ref. @4#. Once the free
energy is constructed using Eqs.~13!, ~14!, and ~17!, one
simply proceeds as usual in DFT, searching for the minim
of the functional, in this case sampling the parameter sp
defined by the orientational order coefficientsa l . This pro-
cedure, though perfectly feasible in the present instan
might be a somewhat delicate numerical task in certain ca
@11#.

An alternative parametrization is to adopt a simple fun
tional form for a(v), e.g.,

a~v!5AeBP1~cosu!, ~19!

which is well known in the study of orientational transition
in liquid crystals@21,22# and is a straightforward result i
simple mean field approaches@13#. HereB plays the role of
aneffective fieldacting on each spin induced by the magne
d

i-

ce

e,
es

-

ordering in the medium. With this single order-parame
approximation, the normalization ofa(v) yields

A5
1

4p

B

sinh B
, ~20!

leading to a spin contribution of the ideal free energy giv
by

E dv a~v!ln@4pa~v!#5B coth B212 lnS sinh B

B D .

~21!

The perturbation free energy can also be integrated explic
in the MF approximation leading to

b f 1
MF@r#52

24hl

T*
Fcoth B2

1

BG2

, ~22!

where

l5
1

2F S 1

z
1

1

z2D2e2z~d21!S d

z
1

1

z2D G , ~23!

i.e., l50.6095 for the cutoff distance considered in t
simulations.

For the MMF approximation, if one uses Neumann’s e
pansion of the exponential in Eqs.~17! and~18!, the orthogo-
nality properties of the Legendre polynomials tell us that
free energy can be expressed as

b f 1
MMF@r#52

1

2 (
l 50

`

~2l 11!2S i l~B!

i 0~B! D
2

ul~h,T* !,

~24!

i.e., a series expansion that depends on a single parametB,
where

i l~x!5Ap

2x
I l 11/2~x!, ~25!

with I l 11/2(x) the modified spherical Bessel functions of th
first kind @23#, and

ul~h,T* !524hE
1

d
dx x2S i l@bJ~x!#

2l 11
2d l0D , ~26!

with

bJ~x!5
1

xT*
e2z~x21!. ~27!

This expression is identical to Eq.~16! in Ref. @5# with the
orientational order parametersa l defined in terms of a single
effective fieldB,

a l5
2l 11

2

i l~B!

i 0~B!
. ~28!

It turns out that for the ferromagnetic systems we are h
dealing with, the multiple-parameter minimization implicit i
Eq. ~18! when all a l are considered free and the singl
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parameter minimization lead to identical results. Con
quently, we will here retain the simpler one-parameter fo
in our calculations.

Note that the minimization with respect to the order p
rameterB can be explicitly done in the MF approximation
leading to

Bm
2

Bmcoth Bm21
5

48hl

T*
, ~29!

where Bm is the order parameter at the minimum. Wh
Bm→0, Bm

2 /(Bm coth Bm21)→3, yielding the Curie line of
the fluid phase

Tc* 516lh. ~30!

Using similar arguments, the Curie line of the fluid phase
the MMF approximation can be shown to be given by

u1~h,Tc* !5
1

3
, ~31!

a result also arrived at in Refs.@10# and @4#.

B. Ferromagnetic solid

In the solid phase the local density is given by

r~r ,v!5r~r !a~v!, ~32!

where r(r ) describes the periodic distribution of particle
centered around the lattice sites of the Bravais crystal. In
hard-sphere solidr(r ) can be accurately parametrized as
sum of identical normalized Gaussians@24,25#, i.e.,

r~r !5S g

p D 3/2

(
i 51

N

e2g~r2Ri !
2
, ~33!

whereg measures the inverse width of the Gaussians and
sum runs over the Bravais lattice vectors$Ri%. Since in a
solid the Gaussians are very narrow, the translational co
bution to Eq. ~6! can be approximated by its asymptot
large-g form leading to the ideal free energy per particle

b f 0
id@r#53 lnS L

s D1
3

2
lnS gs2

p D2
5

2

1E dv a~v!ln@4pa~v!#. ~34!

The excess free energy of the hard-sphere solid has
considered in two slightly different approaches, the gene
ized effective liquid approximation~GELA! @26,27# and the
modified weighted density approximation~MWDA ! @28–
30#, which has recently been applied by Groh and Dietr
@11# to describe the fluid-solid transition in dipolar fluids.
the first instance, we have adopted a perturbative appro
i.e., the hard-sphere solid, approximated in the GELA,
considered to be a pure reference system, with a lattice
rameter known in advance, and then the perturbation term
the free energy is minimized following the Gibb
-

-

n

e

he

ri-

en
l-

h

ch,
s
a-
to

Bogoliubov variational principle. We will first focus on th
GELA since our treatment leads in this case to much simp
quasianalytical results.

In the GELA the excess free energy per particle of t
solid b f 0

ex@r# is mapped onto that of an effective uniform
fluid @26,27#, i.e.,

b f 0
ex@r#5

ĥ~423ĥ !

~12ĥ !2
, ~35!

whereĥ5ĥ(h,g) denotes the effective packing fraction th
is used to represent the solid (h being the average packin
fraction of the solid! and we have assumed that the ha
sphere fluid can be described by the Carnahan-Starling e
tion of state~see@26,27# for details!.

By minimizing the variational free energyb f 0
id@r#

1b f 0
ex@r# with respect tog, for a given average solid den

sity and a crystal structure~here the fcc hard-sphere solid!,
the free energy of the reference solid reads

b f 0@r#5 f HS~h!1E dv a~v!ln@4pa~v!#, ~36!

where

f HS~h!53 lnS L

s D1
3

2
lnS gms2

p D2
5

2
1

ĥm~423ĥm!

~12ĥm!2
,

~37!

wheregm5gm(h) is the value of the order parameter at t
minimum andĥm5ĥ„h,gm(h)…. Note that since the hard
core part~1! has no spin-spin interaction, the angular depe
dencea(v) does not contribute to the excess part of the f
energy, the resulting free energy of the reference solid be
the same as that of the hard-sphere solid~without spin! plus
an ideal contribution coming from the angular distribution
the spin variables. Since this contribution is the same for

TABLE I. Inverse width of the Gaussiang* 5gms2 and effec-

tive liquid densityĥm of the hard-sphere fcc solid as obtained fro
the GELA.

h g* ĥm

0.50 56.4 0.331
0.51 68.0 0.323
0.52 80.9 0.317
0.53 95.6 0.313
0.54 112.7 0.309
0.55 132.8 0.305
0.56 156.6 0.302
0.57 185.1 0.300
0.58 219.9 0.297
0.59 262.4 0.295
0.60 315.3 0.293
0.61 381.8 0.291
0.62 467.3 0.290
0.63 578.6 0.288
0.64 727.8 0.286
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fluid and solid phases, the change of stability between
fluid and solid reference systems is found ath50.517@27#.
In Table I we have gathered the values ofg* 5gms2 andĥm
of the fcc hard-sphere solid for different average solid d
sities.

Using the parametrized form~19! for a(v) and perform-
ing the angular integrations in the translational part of E
~10!, the perturbation term per particle in the MF approa
reads

b f 1
MF@r#52

1

4T*
R~h!Fcoth B2

1

BG2

, ~38!

where

R~h!5ez2/2g* (
j

z

xj
ez~2xj 11!FerfS z1g* ~d2xj !

A2g*
D

2erfS z1g* ~12xj !

A2g*
D G2ez2/2g* (

j

z

xj
ez~xj 11!

3FerfS z1g* ~d1xj !

A2g*
D 2erfS z1g* ~11xj !

A2g*
D G ,

~39!

wherexj (h)5uRj u/s and erf(x) is the error function. For the
MMF approximation we use again Neumann’s expansion
the exponential in Eqs.~17! and ~18!, together with the or-
thogonality properties of the Legendre polynomials, to ge

b f 1
MMF@r#52

1

2 (
l 50

`

~2l 11!2S i l~B!

i 0~B! D
2

v l~h,T* !,

~40!

with

v l~h,T* !5S g*

2p D 1/2

(
j

1

xj
E

1

d
dx x2S i l~bJ~x!!

2l 11
2d l0D

3@e2g* ~x2xj !
2/22e2g* ~x1xj !

2/2#. ~41!

Again, the minimization with respect to the order para
eter can be exactly computed in the MF approximation
find

Bm
2

Bmcoth Bm21
5

1

2T*
R~h!, ~42!

yielding for the Curie line of the solid phase

Tc* 5
1

6
R~h!, ~43!

which reduces to the evaluation of a lattice sum for ea
average solid density. Using similar arguments, the Cu
line of the solid phase in the MMF approximation can
shown to be given by

v1~h,Tc* !5
1

3
. ~44!
e

-

.
h

f

-
o

h
ie

These perturbative contributions remain identical in t
MWDA treatment, in which again the solid is mapped onto
uniform system at a weighted density~see@28# and @11# for
more details!. In contrast to our treatment in the GELA
when using the MWDA, we have followed Groh an
Dietrich, who, from a DFT perspective, minimize the fu
free energy functional built from the ideal, reference, a
perturbation contributions. This implies that the lattice p
rameter and the effective fieldB are variables that enter th
minimization process. Again, one could also use as mini
zation parameters all thea l from Eq.~28!, but at least in our
case this leads to identical results, as it happens with
ferromagnetic liquid. It can be noted that the MF theory d
scribed above is similar to the van der Waals–type the
proposed by Oukouiss and Baus@13#, except for the fact that
in the latter theory the hard-sphere free energy is treate
the ~numerically poor! free volume approximation.

IV. SIMULATIONS

The free energies of the liquid and solid phases were
culated by means of thermodynamic integration. In t
method the absolute free energy of a state is related to
~known! free energy of a reference state via a reversible p
linking both states. For the ferromagnetic phases under
vestigation the reference state that asserts itself is a s
where the spins are perfectly aligned. The actual state
transformed to the perfectly aligned one by coupling t
spins to an external aligning field. Such a procedure w
applied previously by Veerman and Frenkel@31# to deter-
mine the free energy of the smectic phase of spherocylind

The Hamiltonian of the spin system in a constant field
magnitudel is

Hl5H02l(
i

cosu i , ~45!

whereH0 is the Hamiltonian of the system in the absence
the field andu i is the angle of spini with the field. The
change in free energy entailed by the field is given by

Fl5F02E
0

l

dl8K (
i

cosu i L
l8

, ~46!

where ^ &l8 denotes averaging over the system with t
HamiltonianHl8 .

Let us further consider an ideal~noninteracting! system of
spins in an external field. A relation similar to Eq.~46! holds,

Fl
id5F0

id2E
0

l

dl8K (
i

cosu i L
l8

id

, ~47!

where ^ &l8
id denotes averaging over the system with t

Hamiltonian

Hl8
id

52l(
i

cosu i . ~48!

If one now remarks@31# that in the limit of an infinitely
strong field (l→`,) Fl2Fl

id→Fp , the free energy of the
parallel ~perfectly aligned! system, then



ation.
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TABLE II. Contributions to the free energy of the spin system in fluid and solid reference states as obtained from the MC simulD
denotes the last term on the right-hand side of Eq.~51!.

r* T* bFHS/N bFp /N bFl0

id /N b/N*0
l0dl^( icosui&l8

bD/N bF/N

0.92 1 3.498a 25.162 294.702 98.033 0.156 21.675
0.92 3 3.498a 10.613 294.702 97.010 0.057 12.978
1.10 1 5.653b 25.025 294.702 98.220 0.187 21.324
1.10 3 5.653b 12.097 294.702 97.203 0.067 14.665

aFrom the Carnahan-Starling equation of state@20#.
bFrom the Hall equation of state@35#.
ly

-

is
q.
of

n
-

be-
isti-

kel
-

F05Fp1F0
id1E

0

`

dl8F K (i
cosu i L

l8

2K (
i

cosu i L
l8

id G
~49!

.Fp1F0
id1E

0

lm
dl8

3F K (i
cosu i L

l8

2K (
i

cosu i L
l8

id G . ~50!

The last relation follows from the fact that for sufficient
large lm the contribution of the neglected term~integral
from lm to `) will be vanishingly small.

Finally, from a numerical point of view, it will be conve
nient to split the integral in Eq.~49! into two parts

F05Fp1F0
id1E

0

l0
dl8K (

i
cosu i L

l8

1E
l0

lm
dl8F K (i

cosu i L
l8

2K (
i

cosu i L
l8

id G ,

~51!

where
Fl0

id 52
N

b
lnFsinh bl0

bl0
G ~52!

is defined so that it vanishes in the zero field limit. This
consistent with the definition of the ideal free energy in E
~6!, where the contribution from the rotational degrees
freedom vanishes in the uniform system limit@a(v)
51/4p#.

For l,l0 the contribution from the ideal term has bee
evaluated analytically. Forl.l0 it is preferable not to sepa
rate the two terms; as remarked in Ref.@31#, if both terms in
the integrand were calculated separately, the difference
tween the two terms would become smaller than the stat
cal error on either term.

Following the strategy suggested by Veerman and Fren
@31#, each trialu i is then sampled from the probability dis
tribution

P~u!}exp~bl cosu!. ~53!

If no overlap occurs, the trial move is accepted and

cosu i ul2cosu i ul, id50. ~54!

If no overlap occurs the trial move is rejected and
TABLE III. Thermodynamic properties of the Heisenberg system at the densitiesr* 50.92 ~liquid! and
r* 51.1 ~solid!. m is the magnetization of the system.

r* 50.92 r* 51.10
Theory bF/N m Theory bF/N m

T* 51
RZH 21.672 0.933

MWDA 24.066 0.970
MMF 21.530 0.946

GELA 23.450 0.968
MF 20.248 0.923 GELA 20.780 0.948
MC 21.68~2! 0.935~1! 21.32~3! 0.949

T* 53
RZH 2.960 0.759

MWDA 4.345 0.838
MMF 3.177 0.714

GELA 4.629 0.836
MF 3.246 0.698 GELA 4.79 0.821
MC 2.98~2! 0.764~2! 4.67~3! 0.82
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cosu i ul2cosu i ul, id5cosu i
oldul2cosu i

newul, id . ~55!

At this point we are still left with the calculation of th
free energy of the parallel system. This is simply the syst
where particles interact by a Yukawa potential~in addition to
the hard-sphere interaction! and the free energy is easily ob
tained by perturbation around the hard-sphere value, i.e.

Fp5FHS1E
0

1

dlK 1

2(iÞ j
J~r i j !L

l

, ~56!

where the average is taken over a system with an inter
ticle potential

ul~r !5u0~r !1lJ~r !. ~57!

V. RESULTS

A. Simulations

The first goal of our investigation was to locate the pa
magnetic solid–ferromagnetic solid transition. This was do
by recording, at a fixed density, the magnetization of a 5
particle fcc crystal as a function of temperature and estim
ing the critical temperature from the inflection point of th
curve. Such an estimate, ignoring finite size effects, can
expected to be only qualitative. However, a comparison
Ref. @8#, with the more precise value of the transition tem
perature obtained from the intersection point of the four
order Binder cumulant@32# for the magnetization plotted as
function of temperature for different system sizes show
that this estimate is in fact quite accurate. Therefore, we
not apply this more time consuming procedure here. T
critical temperatures are approximatelyT* 56.7 and T*
57.3 for the densitiesr* 51.1 and 1.2, respectively.

The free energybF/N was calculated along the lines d
tailed in Sec. IV, using the canonical MC method, at t
densitiesr* 50.92~liquid! andr* 51.10~solid! and the two
temperaturesT* 51 and 3. The number of spins was 51
The different contributions tobF/N are summarized in
Table II. The free energy of the parallel systembFp /N @cf.
Eq. ~56!# was evaluated using a five point Gauss-Legen
~GL! quadrature. In fact, the integrand varies very little w
l ~the difference of the averages appearing in the integr
for l50 and 1 being only 0.02! so that a first-order pertur
bation would be a good approximation@33#. The integrals in
Eq. ~51! were evaluated using a six-point GL quadrature a
the valuesbl05100 andblm550 000. For each value ofl
averages were taken over runs involving between 30 000
40 000 trial moves per particle~after equilibration!. The free
energy along an isotherm was obtained by integration of
pressure

p

kT
5r1S p

kTD
HC

1S p

kTD
spin

, ~58!

which is the sum of the hard-core part (p/kT)HC and the spin
part (p/kT)spin given by

S p

kTD
spin

52
4pr2

18kTE dr r 3J8~r !hD~r !. ~59!
m

r-

-
e
-
t-

e
n
-
-

d
id
e

e

d

d

nd

e

In Eq. ~59! J8(r ) is the derivative ofJ(r ) andhD(r ) the
projection of the pair distribution function ons1•s2 . We note
that, owing to the discontinuity of the potential atr 5r c , a
d-function contribution arises that is quite significant in t
ferromagnetic phase. It is given by

S p

kTD
c

52
4pr2

18kT
r c

3J8~r c!hD~r c!. ~60!

Along the isothermT* 51, the pressure was calculated in th
density intervals r* 50.8521.00 ~liquid! and r* 51.06
21.16 ~solid! and along the isothermT* 53 in the intervals
r* 50.9021.00 ~liquid! andr* 51.0221.14 ~solid!; the re-
sults were fitted to simple polynomial expressions.

For comparison we include the free energy values
tained in the ferromagnetic liquid phase using an integ
equation technique recently devised to deal with inhomo
neous systems@34#. The reference Zerah-Hansen~RZH! clo-
sure relation used is especially designed to reproduce
zero field singularities of the magnetic susceptibility and
though free energies are only accessible through thermo
namic integration, the results obtained are in absolute ac
dance with the simulation data, as can be appreciated
Table II. Coexistence densities, summarized in Table
were obtained from the equality of the pressures and che
cal potentialsbm5bF/N1bp in the two phases.

B. Density functional theory

The key quantity in a thermodynamic description
doubtless the free energy. It is then worthwhile assessing

FIG. 1. Free energy atT* 51. Simulation data are represente
by circles. A dash-dotted line denotes MF results, which include
GELA in the solid, and a dotted line stands for the GELA plus t
MMF data. A solid line represents MMF data in the liquid pha
and the MWDA plus the MMF data in the solid.
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ability of our theoretical approaches to provide a sens
description of this quantity. However, it must be borne
mind that solid and fluid phases have not been treated o
equal footing. The reference system for the latter, nam
the hard-sphere fluid, is known to be accurately described
the Carnahan-Starling equation of state. In contrast, for
hard-sphere fcc solid phase we have to resort to DFT
proaches such as the GELA and MWDA, which will them
selves introduce certain inaccuracies. The behavior of
and MMF approaches will consequently differ in bo
phases. From the results collected in Table III, one can
preciate that as far as the liquid is concerned, the MMF
MF treatments are comparable, though the MMF seems
perior at low temperatures. Nonetheless, these approx
tions cannot match the RZH results, in particular at low te

FIG. 2. Free energy atT* 53. The curves are labeled as in Fi
1.

TABLE IV. Coexistence properties of the Heisenberg spin s
tem and the fully aligned system.

Theory r l* rs* bp bm

T* 51
MC 0.89~2! 1.11~2! 2.01 22.03
MF
MMF ~GELA!

MMF ~MWDA !

MC ~fully aligned! 0.873 1.113 0.71 24.38
T* 53
MC 0.93~2! 1.05~2! 9.20 10.45
MF 0.892 1.023 8.4 8.84
MMF ~GELA! 0.883 1.019 8.0 10.8
MMF ~MWDA ! 0.850 1.039 6.85 9.54
e

an
y,
y
e

p-

F

p-
d
u-
a-
-

peratures. This approach, however, is so far unsuitable
phase equilibrium calculations since the optimization pro
dure and the thermodynamic integration are exceedin
time consuming.

In Figs. 1 and 2 we have plotted the free energy along
two isotherms for which the simulation was performe
Again in the liquid we observe that the MMF theory pe
forms slightly better than the MF approximation. As to th
solid, at the higher temperature the combination of
GELA plus the MMF theory reproduces almost exactly t
simulation data. When the temperature is lowered, the
proximation is not as good, and the results are actually ra
poor. Both the GELA with the MMF theory and the MWDA
results lie consistently below the simulation data, a situat
that is reversed in the liquid phase, and as a consequenc
double tangent construction is impossible atT* 51. At this
temperature none of the theories predicts an equilibrium
tween the ferromagnetic liquid and solid phases, but betw
the paramagnetic gas and the ferromagnetic solid. This i
contrast to the simulation, which clearly indicates that t
triple point must lie somewhere belowT* 51. The solid-
fluid coexistence properties are determined by means
double tangent construction and for the two isothermsT*
51 andT* 53 are summarized in Table IV. Now the com
parison between the various theoretical approaches is m
inconclusive. In Fig. 3 we show the complete phase diagr
as obtained from the simulation~gas-liquid equilibrium data
and the location of the liquid Curie line are taken from R
@5#! and in the MMF approach~both using the MWDA and
GELA descriptions for the solid!. The simulation estimates
of Curie line in the solid phase are also shown in the figu
Now the MMF plus GELA seems to be in better agreem
with the simulation. Moreover, the combination of th
MWDA with the MMF perturbation term with the double
minimization strategy proposed by Groh and Dietrich@11#
yields in our case a Curie line that considerably devia
from the simulation estimates and departs somewhat f
the typical linear behavior. Although the scarcity and unc
tainties of the simulation data do not allow for a defin
assessment, it seems that the simultaneous optimizatio
the lattice parameter and the effective field affects the res
quite unpredictably. On the other hand, the fact that
GELA predictions for the solid-liquid equilibrium are
slightly better is not at all surprising since it simply reflec
that this approximation is already somewhat more accu
for the reference system. We note in passing that the M
Curie line is identical to the MF line in the solid phas
provided the reference system is kept constant for all te
peratures, since the temperature at which the transition
curs is so high that the linearization of the exponential in E
~17! does not introduce appreciable changes in the resul

Finally, in Fig. 4 we present the complete phase diagr
in the mean field approximation, including the Curie lin
both in the liquid and in the solid phases. The gas-liqu
critical point is clearly underestimated by the MF approa
but aside from this the overall aspect of the phase diagra
quite similar to that obtained using MMF perturbation term
In both cases the triple point is overestimated by far, i.e.,
simulation indicates that the Heisenberg interactions can
bilize the liquid phase to a larger extent than predicted by
theory.

-
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VI. CONCLUSION

We have presented a complete mapping of the vari
phases present in the hard-sphere Heisenberg spin sy
ferromagnetic and paramagnetic solid, ferromagnetic flu
and paramagnetic gas. The predictions of various approa
resulting from a combination of DFT and perturbation theo
are qualitatively correct, but tend to underestimate the sta
ity of the liquid phase. Most of the discrepancies stem fr
the poor performance of the theories for the low-tempera
ferromagnetic solid, which distorts the shape of the ph
diagram. There is much room for improvement here. T
liquid phase can be described with extreme accuracy u

FIG. 3. MMF phase diagram of the Heisenberg spin syste
Simulation data are represented by symbols~solid circles are
GEMC gas-liquid equilibrium data, squares denote the fluid-so
equilibrium estimates, and diamonds mark the paramagne
ferromagnetic transition!. Solid lines denote MMF results and th
MMF plus the MWDA, and the GELA MMF equilibrium is repre
sented by a dotted line. Fluid-solid data atT* 57 correspond to
plain hard spheres.
. B
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recently developed integral equation techniques and rea
ably well using the DFT approaches just mentioned; ho
ever, this will not suffice to attain an accurate mapping of
phase diagram until a better theory for the solid phases
comes available.
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